

DODATEK DO LABORATORIUM 3

Sprawdzenie funkcji logicznych za pomocą Logic Converter

W programie Multisim (wersji PC) znajduje się komponent Logic Converter (jedna z ikonek w prawym pasku narzędzi).

Po naciśnięciu na niego, można zauważyć różne opcje:

- Ilość wejść (A,B,C,D,E,F,G,H)
- Stan wejść (pole pod ilością)
 - Jest tutaj możliwość wybrania jakie powinno być wyjście dla danych wejść tj. 0, 1, X
 stan nieokreślony
- Konwersje
 - Wygeneruj z podłączonego układu tablicę stanów (służy do do sprawdzenia wyników, zdjęcie 4)
 - o Z samych stanów wygeneruj funkcje
 - o Z samych stanów wygeneruj uproszczoną funkcję
 - o Z funkcji wygeneruj układ na bramkach (bramki tylko NOT, AND, OR)
 - o Z funkcji wygeneruj układ tylko na bramkach NAND

Ð	—> А В	Logic converter-XLC1													
<u> </u>	<u>+ + + + + + + + + + + + + + + + + + + </u>	000	0 A 0	O B O	0000	0	© E	© F	O G	© н	?	<u>^</u>		Convers	Ou
		007 002 003 004 005 006 007 008 009 010 011 012 013	0 0 0 0 0 1 1 1 1 1	0011110000111	1 1 0 1 1 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0					· · · · · · · · · · · · · · · · · · ·		10 10 AIB AIB AIB		IOLI AIB 1º AIB IOLI IOLI ED- NAND
		014 015	1	1	1	0					?	~			

Przykład 1. Sprawdzić tablicę stanu przed i po uproszczeniu poniższego układu: A) ABC' + (ABC')'

Schemat oryginalny (podstawowy): U1 U4 X1 0 Key = A AND3 U2 2.5 V U5 0 Key = B OR2 U6 U7 0 Key = C ΝОΤ NOT U13 0. Key = Space INTERACTIVE DIGITAL CONSTANT

Schemat po uproszczeniu:

Jak sprawdzić, czy poprawnie został uproszczony schemat?

1. Dodaj element o nazwie: TEST_PT_THT

Znajduje się on w grupie Connectors -> HEADERS_TEST

- 2. Dodaj tyle elementów ile jest wejść (w przykładzie 3 wejścia)
- 3. Stwórz układ, potraktuj TEST_PT_THT jako poszczególne wejścia A,B,C itp.
- 4. W Logic Converter ostatni pin służy jako wyjście schematu. Pozwoli to na sprawdzenie tablicy prawdy układu.
- 5. Do pinów Logic Converter licząc od lewej strony podłącz odpowiednie wejścia A,B,C (TEST_PT_THT)

6. Naciśnij 2 razu na Logic Converter i naciśnij 1 przycisk, który z układu wygeneruje tablicę prawdy.

7. Porównaj, czy tablica prawy jest zgodna (może być także przypadek gdy jeden z pinów po konwersji jest w ogóle nie potrzebny!)

